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We consider the problem of multivariate convex approximation by positive linear
operators. Let E be a k-dimensional compact convex set in Rk with k�2, 0/Rk

an open set containing E, and let L : C(E ) � C1(0) be a positive linear operator.
Our main result of this paper shows that if L preserves convexity and satisfies Ll=l
on E for all l # P1 (the space of affine functions), then L is trivial (i.e., Lf # P1 on
E for all f # C(E)) and E is a simplex. � 1996 Academic Press, Inc.

1. INTRODUCTION AND MAIN RESULT

For multivariate polynomial convex approximation, some fundamental
results have been obtained by A. S. S8 vedov [1] with Jackson type estimates
(see also [2]). More general results on shape preserving approximation by
multivariate polynomials have been given in [3]. But for multivariate con-
vex approximation by positive linear operators, even the following problem
has not been solved:

Open Problem. Do there exist a k-dimensional compact convex set
E/Rk with k�2, and a sequence Ln : C(E ) � C1(0n) of positive linear
operators, where 0n/Rk are open sets containing E, such that each Ln

preserves convexity and limn � �&Ln f & f &E=0 for all f # C(E )?

Here C(E) denotes the Banach space of real continuous functions
defined on E with the maximum norm & }&E : & f &E=max[ | f (x)| | x # E],
Pn denotes the space of k-variable real polynomials with total degree �n.
For a linear operator L : C(E) � C(E ), if f �0 on E O Lf �0 on E, then
L is called positive; if f is convex on E O Lf is also convex on E, then we
say that L preserves convexity; if (Lf )|E # P1 for all f # C(E ), then we say
that L is trivial. Trivial operators cannot be used to approximate con-
tinuous functions. In [2], the author gave a partial negative answer to the
problem for polynomial operator cases: If for some n�2, Ln : C(E ) � Pn
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is a non-trivial positive linear operator and is invariant on affine func-
tions, i.e., Lnl=l for all l # P1 , then Ln can not preserve convexity. Note
that when k=1, there is no such problem; the Bernstein operators
Bn : C([0, 1]) � Pn preserve convexity, monotonicity, etc., and hold
limn � � &Bn f & f &[0, 1]=0 for all f # C([0, 1]) as well known. Then we see
that there exist some essential differences between the cases of one variable
and multivariable in (polynomial) positive linear operator shape preserving
approximation. These differences were first observed by Chang and Davis
[4] for Bernstein polynomial operator cases; they exhibited (by com-
puting) a simple bivariate convex (piecewise linear) function whose second
degree Bernstein polynomial is not convex. As commented in [5, 9 4], this
observation triggered numerous studies of convexity preserving properties
of the Bernstein�Be� zier representation of multivariate polynomials with
many positive and constructive results. This investigation process shows
again that negative results are also often promote the development of the
subject in positive direction. In [2], two of key steps for proving the
negative result mentioned above were based on Markov inequalities and
analyticity of polynomials. Through further investigation we find that the
restriction that L maps C(E ) into a polynomial space is not necessary. The
important factors that influence the convexity preserving property are (or
at least include) the following three aspects:

(1) the positivity of a positive linear operator L,

(2) the behavior of L acting on affine function space P1 and
geometric property of E,

(3) the regularity of L, i.e., L maps C(E ) into a smooth function
space, for instance C1(0), where 0 is an open set containing E.

On the aspect (1), the author in [6] (see also [3]) constructed a kind
of Bernstein�Durrmeyer type polynomial operators Mn , Mn&s, s : C(T*) �
Pn defined by Mn=Mn, 0 ,

Mn&s, s f (x)=
(kn+k+s) !

(kn+s)!
:

|&|�n&s

Bn&s, &(x) |
T

Bkn+s, ne*&& (t) f (e*&kt) dt,

s=0, 1, ..., n, where Bn, & (#Pn, &) # Pn are Bernstein base functions, e*=
(1, 1, ..., 1),

T={x=(x1 , x2 , ..., xk) | xi�0, i=1, 2, ..., k; :
k

i=1

xi�1= ,

T*={x=(x1 , x2 , ..., xk) | 1&k�xi�1, i=1, 2, ..., k; :
k

i=1

xi�0=
=[e*&kt | t # T]#T, k�2.
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The operators Mn , Mn&s, s satisfy Mn1=1, Mn&s, s1=1 and possess the
following important property: Let P(D)=� |:|=s C:D: be a homogeneous
partial differential operator. Then for n>s,

P(D)(Mn f )=an, s Mn&s, s (P(D) f ), \f # Cs(T*), (1.1)

where

D:=D:1
1 D:2

2 } } } D:k
k , :=(:1 , :2 , ..., :k),

Di =���xi , an, s=ksn! (kn+k)!�(n&s)! (kn+k+s)!.

Using the property (1.1) we have proved in [6] that if f # C(T*) is convex
on T*, then Mn f is convex on T, and limn � � &Mn f & f &T=0 for all
f # C(T*). But these operators are not positive on C(T*). That is , for f �0
on T*, we only have Mn f�0, Mn&s, s f�0 on T. The operator Mn is a
modification of the Bernstein�Durrmeyer operator Mn : C(T ) � Pn , defined
by (see [7], [8])

Mn f (x)=
(n+k)!

n !
:

|&|�n

Bn, & (x) |
T

Bn, & (t) f (t) dt.

The operators Mn are positive on C(T ) and hold limn � � &Mn f & f &T=0
for all f # C(T ), but they cannot preserve convexity. In fact, if (for some n)
Mn preserves convexity, then it must be a trivial operator , or equivalently,
n=1. To see this, we choose a special convex function g(x)=|x1&x2 |
(x=(x1 , x2 , ..., xk)) and suppose that Mn preserves convexity. The fol-
lowing equalities can be easily checked by computing and properties of Mn

(see [7], [8]).

Mng(0)=
1

n+k+1
, D1 Mn g(0)=D2Mng(0)=

1
2

}
n

n+k+1
,

Dj Mng(0)=0 for j>2,

|
T

Mng(x) dx=|
T

g(x) dx=
1

(k+1)!
=|

T
[Mng(0)+({Mng(0), x)] dx.

(1.2)

Here and later we denote as usual

{f (x) :=(D1 f (x), D2 f (x), ..., Dk f (x)),

(x, y) := :
k

i=1

xiyi , &x& :=- (x, x) .
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Since the polynomial Mng is convex on T, we have

Mng(x)�Mng(0)+({Mng(0), x) , \x # T,

and then by (1.2),

Mng(x)=Mng(0)+({Mng(0), x) , \x # T.

Especially for x=e1=(1, 0, ..., 0),

Mng(e1)=Mng(0)+D1 Mng(0)=
1

n+k+1 \1+
1
2

n+ .

On the other hand, by the choice of g and Mnli (x)=(1+nxi )�(n+k+1)
we have

Mng(e1)>Mn(l1&l2)(e1)=
n

n+k+1
,

where li (x)=xi for x=(x1 , x2 , ..., xk). Thus 1+ 1
2n>n and so n=1.

On the aspects (2), (3), we have the following theorem which is the main
result of this paper and gives a further partial negative answer to the open
problem.

Theorem. Let E/Rk be a k-dimensional compact convex set with k�2,
0/Rk an open set containing E, and let L : C(E ) � C 1(0) be a positive
linear operator satisfying

(i) L1=1,

(ii) \l # P1 , Ll�0 on E O l�0 on E.

Then

(a) E is a convex polyhedron.

(b) L can not preserve convexity unless L is trivial and E is a simplex.

Remarks. The condition (ii) is equivalent to geometric condition
conv _(E )=E under the condition (i) (see the proof of the Theorem
in 9 3), where _(x)=(Ll1(x), Ll2(x), ..., Llk (x)), li (x)=xi . If E is already a
k-dimensional compact convex polyhedron, and a0 , a1 , ..., am are all its
extreme points, then the following condition

Ll(ai)=l(ai), i=0, 1, ..., m, \l # [l1 ,l2 , ...,lk], (*)

together with (i), implies condition (ii).
Obviously, if L is invariant on P1 , the condition (i), (ii) are both

satisfied. In applications, this Theorem is more useful than those obtained
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in [2]. For instance , if E is a k-dimensional compact convex polyhedron
(k�2) and L is a non-trivial positive linear operator from C(E) to a
C1-spline function space or a polynomial space and satisfies conditions
(i) and (*) (therefore condition (ii)), then L can not preserve convexity. As
a consequence, all the Bernstein�Be� zier polynomial operators (see [5]) of
degree�2 over k-dimensional simplices or rectangles with k�2 can not
preserve convexity. We can also get even more general negative conclusion
on such operators when using condition (ii) (or sufficiently condition(*)).
Let Ln : C(T) � Pn be Bernstein type operator of degree n�2 having the
form

Ln f (x)= :
|&|�n

Bn, &(x) 4n, & f, (1.3)

where 4n, & are positive linear functionals defined on C(T ) satisfying
4n, &1=1 \& and 4n, nai lj=$i, j (Kronecker delta), i=0, 1, ..., k; j =
1, 2, ..., k, where a0=(0, ..., 0), a1=(1, 0, ..., 0), ..., ak=(0, ..., 0, 1), conv[a0 ,
a1 , ..., ak]=T. By Bernstein polynomial property we have Ln1=1,
Lnl(ai)=l(ai), i=0, 1, ..., k for all l # [l1 , l2 , ..., lk]. Therefore Ln satisfies
condition (ii). Note that Ln needs not to be invariant on P1 . For instance,
if there exist some l # P1 and &�n � [a0 , a1 , ..., ak] such that 4n, & l{l(&�n),
then Lnl{l by Bernstein polynomial property. Many concrete examples of
such operators can be easily constructed without loss approximation
property (see example below). But, of course, they can not preserve con-
vexity.

For C 1-spline operator cases, however, we could not find any known
such operator that satisfies conditions (i), (*) (or conditions (i), (ii)) and
so does not preserve convexity and this was not known before. To the
author's knowledge, there was perhaps no such C1-spline positive linear
operator. If it is so, then the Theorem of the present paper may be only or
at least useful for future theoretical applications.

Finally we remark that since some known positive linear operators (e.g.,
Bernstein�Durremeyer operator Mn discussed above) neither satisfy condi-
tion (ii) nor preserve convexity, whether the condition (ii) can be left out
from the Theorem when E is already supposed to be a k-dimensional sim-
plex remains open to investigate.

Example. We present here a simple method to obtain a class of
positive linear operators Ln : C(T ) � Pn that satisfy conditions (i) and (*)
(therefore condition (ii)) and are not invariant on P1 , and possess
approximation property. Let 4� n, & be positive functionals on C(T ) defined
as

4� n, & # [4 (1)
n, & , 4 (2)

n, & , ...], \ |&|�n, n�2,
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where

4 (1)
n, & f = f \&+e*

n+k + , e*=(1, 1, ..., 1) # Rk, (k�2)

4 (2)
n, & f =

(n+k)!
n! |

T
Bn, & (t) f (t) dt,

} } }

so that 4� n, & satisfy

(a) 4� n, &1=1, \ |&|�n,

(b) _l # P1 , _& : |&|�n, &�n � [a0 , a1 , ..., ak] such that 4� n, & l{l(&�n),

(c) lim n � � &L� n f & f &T=0 for all f # C(T ), where

L� n f (x)= :
|&|�n

Bn, &(x) 4� n, & f.

Define

4n, & f ={4� n, & f,

f (ai),

|&|�n,
&
n

� [a0 , a1 , ..., ak]

&=nai , i=0, 1, ..., k,

and define Ln by (1.3). Then Ln are positive linear operators form C(T )
into Pn satisfying Ln 1=1, Ln f (ai)= f (ai) \f # C(T ), \i=0, 1, ..., k and
Lnl{l for some l # P1 by Bernstein polynomial properties. These show that
Ln are not invariant on P1 and satisfy conditions (i) and (*). Also, we have
&Ln f & f &T�2 &L� n f & f &T � 0 (n � �) for all f # C(T ). In fact, by
Bernstein polynomial properties we have L� n f (ai)=4� n, nai f, i=0, 1, ..., k,
which imply

&Ln f &L� n f &T=" :
|&|�n

Bn, & ( } )[4n, & f &4� n, & f ]"T

� max
0�i�k

| f (ai)&4� n, nai f |�& f &L� n f &T . K

2. SOME LEMMAS

This section collects some lemmas for the proof of the Theorem.

Lemma 1. Let E/Rk be a compact convex set, 4 : C(E) � R a positive
linear functional with 41=1. Define _=(4l1 , 4l2 , ..., 4lk), where li (x)=
xi (x=(x1 , x2 , ..., xk)). Then _ # E and 4f�f (_) for all convex function
f # C(E).
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Proof. Let f # C(E) be convex and let F=[(x, u) # Rk_R | x # E,
u�f (x)]. Then F is a closed convex set. We need to prove (_, 4f ) # F.
Suppose that (_, 4f ) � F, then by separation theorem, there exists a point
(x0 , u0) # F, such that

( (_, 4f )&(x0 , u0), (x, u)&(x0 , u0)) �0 for all (x, u) # F.

Define g(x)=( (_, 4f )&(x0 , u0), (x, f (x))&(x0 , u0)) . Then g(x)�0 for
all x # E since (x, f (x)) # F. Thus we obtain a contradiction: 0�4g=
&(_, 4f )&(x0 , u0)&2>0, and the Lemma is proved. K

Lemma 2. Let E/Rk be a k-dimensional compact convex set, 0/Rk an
open set containing E. Suppose that L : C(E) � C1(0) is a linear operator
which is bounded when considered as operator from C(E) into C(E). Then the
operators Di L : C(E) � C(E) are also bounded for all i=1, 2, ..., k.

Proof. Equivalently , we prove that there exists a positive constant M
depending only on E and L such that

max
x # E

&{Lf (x)&�M & f &E , \f # C(E). (2.1)

Let W=[(x, y) | x, y # E, x{y]. For any |=(x, y) # W, define

T| f =
1

&y&x&
[Lf ( y)&Lf (x)], f # C(E).

Then T| is a bounded linear functional on C(E),

&T| & :=sup[ |T| f |�& f &E | f # C(E), & f &E {0]�
2

&y&x&
&L&,

where

&L&=sup[&Lf &E�& f &E | f # C(E), & f &E {0]<�.

Since E is convex and Lf # C1(0) for all f # C(E ), it follows that \| # W,
|T| f | � max! # E &{Lf (!)& and so sup[ |T| f | | | # W] < �. By the
Banach�Steinhaus resonance theorem, the set [&T|& | | # W] is bounded,
i.e., _M>0 such that &T|&�M for all | # W. These yield &{Lf (x)&�
M & f &E for all x # int E and all f # C(E), and (2.1) holds since Lf # C1(0)
and cl(int E)=E (see [9, 9 6])/0. K

Lemma 3 (Linear Inequalities [9, p. 198, Theorem 22.1]). Let bi # Rk

and :i # R for i=1, 2, ..., m. Then one and only one of the following alter-
natives holds :
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(a) There exists a vector x # Rk such that (bi , x) �:i , i=1, 2, ..., m.

(b) There exist non-negative real numbers *1 , *2 , ..., *m such that

:
m

i=1

*ibi=0 and :
m

i=1

*i :i<0. K

The last lemma below looks very natural in geometry for k=2, but we
could not find any known reference for general case to such lemma.

Lemma 4. Let E/Rk be a k-dimensional compact convex polyhedron
with k�2, and D(E) denote the set of extreme points of E. Then for any
a0 # D(E), there exists a subset [a0 , a1 , ..., ak]/D(E) and a convex function
. # C(Rk) such that

(a) a0 , a1 , ..., ak are affinely independent,
(b) .(x)�0 for all x # E; .(x)=0, x # E if and only if x # the edge

set 1(a0), where

1(a0)= .
k

i=0

[a0+{(ai&a0) | { # [0, 1]] .

Proof. Since E is a compact convex polyhedron, the set D(E ) is finite.
Let a0 # D(E) and write D(E)=[a0 , a1 , ..., am]. By definition of extreme
point, it is easily seen that the following properties hold:

If *i�0, i=1, 2, ..., m, :
m

i=1

*i (ai&a0)=0, then *i=0, i=1, 2, ..., m. (2.2)

If 0<i<j, then ai&a0 and aj&a0 are linearly independent. (2.3)

Define bi=ai&a0 , K=[�m
i=1 *ibi | *i�0, i=1, 2, ..., m], K(I )=[�i # I *ibi |

*i�0, \i # I], where I/[1, 2, ..., m]. Let r=min[ |I | |I/[1, 2, ..., m],
K(I )=K]. Choose I0 /[1, 2, ..., m] such that |I0 |=r and K(I0)=K.
Without loss of generality, we can suppose that I0=[1, 2, ..., r]. Since
dim E=k, it is easy to see that r�k(�2) and we can suppose that b1 ,
b2 , ..., bk are linearly independent, which imply that a0 , a1 , ..., ak are
affinely independent. By (2.2) and the minimality of |I0 |, the following
linear inequality system

{*0(&b1)+*1b1+ } } } +*r br=0,
&*2&*3& } } } &*r<0,

has no non-negative solution. Thus by Lemma 3 there exists a point p1 # Rk

such that ( &b1 , p1)�0, (b1 , p1) �0, (bi , p1) �&1, i=2, 3, ..., r. If
r<m and r<j�m, then bj=�r

i=1 *i, jbi with *i, j�0, i=1, 2, ..., r and
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�r
i=2 *i, j>0 by (2.3). These imply (bj , p1)=�r

i=2 *i, j (bi , p1)<0. We
have proved that (b1 , p1) =0, (bj , p1)<0, j=2, 3, ..., m. Using the same
argument for each i # [1, 2, ..., r] we obtain that there exist points pi # Rk

such that

(bi , pi)=0, (bj , pi) <0, j=1, 2, ..., m, j{i. (2.4)

Now let .(x)=max[(x&a0 , p1) , (x&a0 , p2) , ..., (x&a0 , pk)]. Then it
is easy to check by E=conv[a0 , a1 , ..., am] and (2.4) that . is the desired
convex function. K

3. PROOF OF THE THEOREM

(a) For any x # E, L( } )(x) is a positive linear functional on C(E). By
Riesz's representation theorem,

Lf (x)=|
E

f (t) +x(dt), \f # C(E ), x # E. (3.1)

where +x is a positive Borel measure. Define _ : 0 � Rk,

_(x)=(Ll1(x), Ll2(x), ..., Llk(x))

where li (x)=xi for x=(x1 , x2 , ..., xk). Then _ is continuous in 0 and
_(E )/E by Lemma 1. We first prove that

conv _(E )=E. (3.2)

Suppose, to the contrary, that there exists a point x* # E"conv _(E). By
separation theorem (note that the convex hull conv _(E ) is also compact)
_a # conv _(E ) such that (x&a, x*&a)�0 for all x # _(E ). Take l(x)=
&(x&a, x*&a). Then Ll=l b _�0 on E and so by condition (ii), l�0
on E. This contradicts to l(x*)<0. (3.2) holds. Now let D(E ) and D0(E )
denote the sets of the extreme points and the exposed points of E respec-
tively. Then by (3.2) we have

E=conv D(E ), D0(E)/D(E )/_(E ). (3.3)

For any exposed point z # D0(E ), there exists a point p # Rk such that the
affine function l(x) :=(x&z, p) <0 for all x # E with x{z. (see [9, pp.
162�163]). Let ẑ # _&1([z])=[x # E | _(x)=z] ((3.3) insures that
_&1([z]) is non-empty). We have, by (3.1),

|
E

l(t) +ẑ(dt)=l(_(ẑ))=l(z)=0
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and so the measure +ẑ concentrates on the point z, i.e., +ẑ is the unit mass
concentrated at z. Thus

Lf (ẑ)= f (z) for all f # C(E ), z # D0(E ), and ẑ # _&1([z]). (3.4)

To prove E is a convex polyhedron, we need only to prove that the set
D(E ) is finite. Since, by Straszewicz's theorem (see [9, p. 167]), the set
D0(E ) is dense in D(E), we need only to prove that D0(E ) is finite. Let
x, y # D0(E ), x{y. By Tietze's extension theorem, there exists an f # C(E )
such that f (x)=1, f ( y)=&1 and & f &E=1. For any x̂ # _&1([x]),
ŷ # _&1([y]) we have, by (3.4) and Lemma 2,

2= f (x)& f ( y)=Lf (x̂)&Lf ( ŷ)=({Lf (!), x̂&ŷ)

�M &x̂&ŷ&,

which imply dist(_&1([x]), _&1([y]))�2M&1, where the constant M
depends only on E and L. Hence the set D0(E ) is finite and so
D(E )=D0(E).

(b) Suppose that the operator L preserves convexity. Then L pre-
serves linearity, i.e., l # P1 O (Ll )|E # P1 . This leads to

\x # E, _(x)=xA+b, _(E )=E, and det A{0 (3.5)

by (3.2), where A is a k_k-dimensional constant matrix, b is a con-
stant vector. (Since dim E=k, we have |det A| mes(E)=mes(_(E))=
mes(E )>0, so det A{0.) Define L_ : C(E ) � C1(0),

L_ f (x)=L( f b _&1)(x), (_&1(x) :=(x&b) A&1 for all x # E )

Clearly, L_ is a positive linear operator preserving convexity and satisfies
L_l=l on E for all l # P1 . Moreover (3.5) implies _(D(E))=D(E ), so by
(3.4) and D(E )=D0(E) we obtain

L_ f (z)= f (z) for all f # C(E ), z # D(E). (3.6)

Since E is a k-dimensional compact convex polyhedron, it follows by
Lemma 4 that for any a0 # D(E ), there exist points a1 , a2 , ..., ak # D(E) and
a convex function . # C(Rk) such that Lemma 4 (a) and (b) hold. Using
Lemma 1 and Lemma 4(b) we obtain 0�L_ .(x)�.(x)=0 for all
x # 1(a0), i.e.,

L_.(a0+{(ai&a0))=0, \{ # [0, 1], i=1, 2, ..., k.
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These imply by Lemma 4(a) that Di L_.(x)|x=a0
=0, i=1, 2, ..., k. Since

L_. is convex on E and L_ . # C1(0), it follows that

0�L_.(x)�L_.(a0)+({L_.(a0), x&a0)=0

i.e.,

L_.(x)=|
E

.(_&1(t)) +x(dt)=0, \x # E. (3.7)

Especially, by (3.6), for any z # D(E ), .(z)=L_ .(z)=0, and so
z # [a0 , a1 , ..., ak] since z is an extreme point. Thus D(E )=[a0 , a1 , ..., ak]
and E is a simplex. Furthermore, (3.5), (3.7), and Lemma 4(b) imply
+x (E"_(1(a0)))=0 for all x # E. Since a0 # D(E ) is arbitrary, substituting
as for a0 we also obtain +x (E"_ (1(as)))=0 for all x # E, s=1, 2, ..., k,
where 1(as) are edge sets of E :

1(as)= .
k

i=0

[as+{(ai&as) | { # [0, 1]], s=0, 1, ..., k.

Because a0 , a1 , ..., ak are affinely independent and k+1�3, the fol-
lowing equality is obvious:

,
k

s=0

1(as)=[a0 , a1 , ..., ak] (=D(E )). (3.8)

Therefore for each x # E, the measure +x by (3.5) and (3.8) concentrates on

,
k

s=0

_(1(as))=_ \ ,
k

s=0

1(as)+=_ (D(E ))=D(E ).

Now for any f # C(E ), choose a linear interpolating function l such that
l(ai)= f (ai), i=0, 1, 2, ..., k. Then by (3.1),

Lf (x)=|
D(E )

f (t) +x(dt)=|
D(E )

l(t) +x(dt)=Ll(x), \x # E,

and so (Lf )|E # P1 since (Ll )|E # P1 for all l # P1 . Thus L is trivial and the
proof of the Theorem is completed.
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